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BCDNDS _D RATES OF CONVERGENCE FOR THE EXTENDED COMPOUND

EST_%T!ON PROB£_ IN THE SEQUENCE CASE

I. Introduction and Summary.

A. The problem

Let _e = (e_, e2, .... an, ... ) be a countably infinite vector

whose components e. are elements of some finite interval _ of thei

real line. Let _ = [pe(-): ee _} be for sor_emeasure _ a family of %..

known probability density functions with parameter 8. Let X i be a

real valued random variable with density_ p@.(° ). Suppose the vector _e
I

is _/(nown and foz each i it is desired to estimate @i" The estln_tes

are to be made in sequence and the estimate of e. may be based on thei

independent observations Xj j = i, ... , i. Thus for each

i = i, 2, ... , a non randomized estimator _i(Xi) is sought for el,

where _Xi is the vector of observations (X_, ... , Xi). It is assumed

that at each stage of this estimation problem one suffers squared error

loss, so that if _[ is the estimate of 8i a loss of (_i " @i)2

units Is suffered. The rlsk of an estimator _1 is defined to be the

expected loss, that is E[(_i(Xi) - el)2]. The averaBe risk for n
n

%)2]estim_tions becomes n _ E[(q_i(Xi) " _ o C._ewould like to find,
in!

for specified ?_ and- U, a decision procedure _ = (q_l'@2' °°" ) which,

on the basis of its ._verage risk for the first n estimations, is in

some sense optimal for large no
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One way i.uwhich such a pr'oble:_could arise is as follows: suppose

the Navy wishes to screen all ne_,recruits and to classify them on the

basis of their "natuea! aptitudes":to De radar t_c_Lnicians, in an

attempt _c do this: each recruit "s given a test whose outcome can be

represented as a number. Suppose also that "natural aptitude" can be

represented on a numerical scale. On the basis of prolonged testing and

evaluation in the past, the Navy has been able to fit a good probability _

distribution model for the outcome of a person's test score given his

"true" aptitude as a parsuneter. The Navy now wants to estimate each new

recruit's aptitude on the basis of his test score. While squared error

loss is somewhat artificial, it is cleai' that the more _he Navy errs in

estimating a recruit's aptitude the greater the loss it suffers, and

squared error loss is a convenient way to represent this. In this

example it is also apparent that many aecisions will be made, and from

the Navy's point of view, the average risk incurred is a reasonable basis

upon which to judge the_ "optimality" of a decision procedure. In this

.th
example, then, 8.1 would be the I recruit's true aptitude and X i

would be his test score.

In the preceding example it is not unreasonable to assume each

recrult' s aptitude is independent of all other recruits' aptltudes. An

example will now be presented in Jhich it is not unreasonable to sappose

the 81's would occur in "patterns." Suppose a Navy anti-submarine

group is on patrol duty to guard against submarine penetration. It is

necessary, in deciding what type of patrol to carry out, to have an

estimate o9 the average sonar detection range. This range will depend

upon many different factors such as sea temperature and salinity, as

2
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well as the sonar equipment involved. Suppose a test is conducted every

few hours whose results follow rea:onably well a known probability dis-

tribution with the true average detection range as a parameter. In this

example then, @i would be the true detection range _%d X i the test

result. One would not expect ei and @i+l to Be unrelated, however,

as the conditions fixing their value, while changing, are changing more

or less continuously in time and a high value of @i would tend to mean

a high value of @i+l as well. In this example, as in the previous one,

a decision about the true detection range will be made many times, and

the average risk is a reasonable criterion to use in evaluating a decision _"
2

procedure.

B. Known results.

The problem of flnding a good estimator _s really twofold. First

some standard of optimality must be established, and secondly a procedure
W

must be found which yields good results according to this standard.

Samuel [ll] has considered the following standard. Fix -he. Let Gn(-)

be the empirical distribution function of 9 . That is
_n

Gn(x) = 1 (the number of i such that @i < x) .n

Let [@i; i = i, ... , n) be mutually independent ident_aally distributed

random variables with a priori distribution f_ction G . If we now con-
rL '---

L

sider X i to be an observation of a random variable with the conditional

density function Pe given that 8_ = el, then the usual Bayes argument
i

gives @i(Xi) = E[SIIX i] as the estimator achieving the minimum Bayes risk

R(_), Of course this procedure does not apply to the compound estimation

mm mm i

1966007313-006



problem since G is unknown and in any case the ei are not obser-

vations of random variables. Nevertheless Samuel has siiown R(Gn) is

an "optir_l" standard to use in evaluating a procedure _ in the

following sense: Let R I(_, _) denote the average risk for the first

n decisions incurred by a decision procedure _ against a parsumeter

vector _e. Then R(Gn) is an "optimA!" standard in that if one considers_

only the class of "obvious" procedures (_n: _i(Xi ) = _(Xi)

i = i, ... , n) then V n Rn (_' _e)_> R(Gn). In other words if one

bases his decision about @i only on the observation having @i as a

parameter and uses the same rule for each i_ one can never achieve s.+

lower average risk than tile :Am,_ber R(Gn).

Samuel a!_o gives several sufficient conditions on 2' {Pc: @e_ ),

and _ which ensure that for each fixed _e

I--_L (Rn(_, e) - R(Gn) ) < 0
n--)oo

and in 'several cases she exhibits specific procedures which satisfy the

above condition.

Robbins [ 6 ] [7 ] [8] and Johns [ 5 ] have done work in the related

empirical Bayes problem (see Chapter III, Section G) and many of the

decision procedures they derive are also "optimal" iu the comp0uad deci-

sion problem. Extensions of their estiraators will be used in later

sections.

C. Summary of new results.

As mentioned in Section B it is first necessary to establish a

reasonable standard of "optinality" to use in evaluating a particular

1966007313-007
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! decision procedure. Many reasons have beet, :.-.._vancedin the ]iteratui',:

for considering tlie risk E[(_ i d._--t_o--bc-a-_,_6d-indica+._on of howi ±
I

well a particular decision rule does. In the compound de_.is_on problem,.
• .

' " 2)
1 it seems even more reasonable to consider the average_ risk En , as-

s reliable index to be used in evaluating apartlcular dec_sson procedure

_, and this is the index adopted in this paper. A standard R(:_On) is _:

:, now needed such _h..._t-if for all _8 and :1 R(_n, _On) is no greater than .

J R(_en), one would be willi:ig tO ssy _ is a good decision procedure. '

I Samuel has given good intuitive reasons for selecting R(_en) = R(Gn) , and
i

: has made _he statement [ii] that R(Gn)= cannot, in the limit, be improved
|

: upon. Based on an idea of Johns [5], a sequence of more stringent stand-.--

:: ards [_(O_n): k = 1, 2, ... } will, however, be obtained in this paper such| : =

i : J.hat RI(_On) = R(Gn) ; and for any fixed k = i, 2, ...: and for all _O,

1 Rk(-en) = _+i(-en) + f(k, n_ _e) + h(k, n, _8)' where f(k, n, -O) _> 0 and

,h(k, n, O) = O( ) unifor,fl.y in o. "rna, .ditSon for "most." O,

f(k, n, _O) is in fact strictly positive. _(_en) will be shown to be

the minimum Bayes risk possible if' in fact 0 is a realizat:ion of an
--n

n dimensional r_mdom vector whose last k components are independently

distributed from the first n - k components according to the k
-)

dimensional empirical distribution function generated by 0 . The ex-
--n

tended compound e: timation problem is defined to be the l,rob]._,mof finding

procedures which asymptotically achieve these, standa_.d.s. The analo{_ous

!.,r_hlemin the empirical Bayes case is being, considered by Bavndorff-
u

" Nielsen [i]. To make these statements more explicit several deflnitlons

are needed. These definitions will be used throughout the paper.
c

C

5
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Def. i) Let _ be a bounded interval of the real line.,, Let -_ _

g = [Po: 0¢ _ } . be "a f_mily of probabilitydensity• _ . functions_: • . ..with. _ respect._ . ;.-_ _ -.

to some measure _. Le* : 0.¢_ J = l, 2; 3, • ] be an ar_i_trary _"

sequence. Le_ [Xj: J = i, 2, ..:.] be:a _sequence:of:mu_:ually tilde- '-_:\_ _

pendent-real valued random variables with Xj distributed ac:c0r_y_%o,-:_._ ._:_:/..... _-:

• o,..., o;
POj"' Let Xj = (Xi, ;.. , Xj). Let: "_8= (81, 2 ,. " " - - --::__-_----_

Oica i = i, 2, .... Let : 0 be the vector consisting of-the first
t - _

n components of O. " . ., _

Def. 2) VO, n, _ k= 1, ... , n the kth ._rder empirical dis- _

tribution function of 0 " is:

@( , ... , yQ .., 1 '_i' Y2 --'n = --- --+ - _ : .. ::

(# of J (k_<_ _< n) such that: Oj.k+_'_< y._ _ =-i, 2, ... , k):

: When k = I this definition yields the usual emp%r_tc_l distribution

function. ._

Let k and m be fixed arbitrary poslt:tve integerq k _< m. I_t

[8," i = i, _... , m) be a sequence of random variables w_th range space

a. Let _--k+l' "'' ' _ have an a priori Joint distribuesi.,,.-., function

G and assume the remaining ,_ ..redistributed independen_ :; of @m"

Let (Xi: i = 1_ ... , m} be a Sequence of random var_a'b._ _- _ith

conditional density functions PO given @i = 8i such _/e.tthe XI

are mutually conditionally independent given the @i _ /_u estimating

the,realization 8m of _m it is well known that t_-_,estimate ,.

E[%IX.k+:I., ... , x], whic_ aepend,onlyonth,lasti observa-

tions,is _ Bayes estimate _nd achieves the Bayes risk R(G).

z _
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I ;: Defo 3) V_e, n,_ k = i, 2, ..° , n
b

i let Rk(_n ) = R(Gkn) where Gk is the kth order empirical dist_';butionn 5

function Of" -nO. Thus Rk(en)_ is the Bayes r_k for Gk.n --

Using the above definitions it willbe shown in theorem A) that .

f(k, n, 0)_ = E[[E(@k+iIV_k+l_ ) - E(Sk+LIX2, ..o , Yh_+i)] _]

_here 83/ ... , 8k+ 1 have the a priori joint distribution, funct:on n " "
I

! It is clear tha_ f. is always non negative and will equal zero only if
1 :

E[Sk+llXk �1]= E[Sk+IIX2, ... , Xk+ 11 with probability -;he° This _,

condition is clearly satisfied for most _ on%y il 0 generates an "

empitical distribution function_ Gk+I_._ such that _i and -Sk+l a.re .

independently distributed. It is not unressonable'to suppose that "few"

arbitrary sequences, occurring, in situations leading to the: compound

decision problem, will satisfy v_his condition , even, as n approaches _°
P

Another necessary condition for E[:Sk+II_Xk+l] E[Ok+ _ IX2, oo° _ Xk+ I]

is that the sample serial correlation coefficient lag k 4 1 of

[0.: i = i, ... , n] be Zero. Again it seems-unlikely that many
:1

b

sequences of O. would have this property, espedia-lly for small values
1

of k° In particular _if 0 has repeated "patterns" of length greater

than k, neither of these conditions would be expected to hoido !

Accepting Rk(_en) as a staudard to be used in evaluating a d. _,ision

procedure cp, attention is turned to constructing procedures for specific

classes g, and to evaluating these procedures.

i

7
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.k
Def. 4) Let _kn(2,__) = Rn(_, _e) - Rk(_en). Thus 6n(_, e)

represents the difference after n decisions between the average risk

attained by a particular decision procedure and the kth standard.

For many important classes _, includip_ the normal, gamma, a

discrete exponential family# and a "non-parametric" class, decision

9rocedures k will be found and an upper bound B(k, n) will be given

such that _kn(_k, 2) --<B(k, n) for all _9c[I_ and such that

!iraB(k, n) = O. For the discrete exponential family, which includes
n-9_

the geometric, negative binomial, and Poisson families, it will be

shown that B(k_ n) = 0___ • These results repre sent a cons ide table

improvement over those obte :n_d by Samuel [ll] who considered only the

case k = 1 and showed

li-'_[Rn(__, _e) - Ri(_en)]_< 0
n-_

for any fixed e in a parameter space more restricted than that con-m

sidered in this paper. If _ is the ciass of binomial probability

density functions, a decision procedure is obtained which attains a
I i

risk than previously known procedures, and OI_ I is

lower average
I II I

obtained as the rate of convergence of this risk to its "standard."

8
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II. Pre!_minary Results.

t

in e,bls chapter we shall first prove that _(_en) = Rk+l(gz? _

f(k, n_ _e) + h(k, n_ e) where f and h have the properties stated

in Chapter I. We shall then develop a general theorem and corollary

which will enable us to obtain specific decision procedures in Chapter III.

Finally we shall prove several lemmas which will be useful in Chapter IIY.

= zL' "" Yn)Def. 5# Let _n ( Y2' . , be an arbitrary vector.

k= (Yn Yn-k+2' Yn)For k_< n we define _n -k+1'_ "'" ' "

Def. 6) V_, _, _ k, n such that 15 k _ n let

n k
1

Qn(-Xk) = n- k + 1 _ _ (x_)
j=k _='lPOj-k+_

1 n _ °
%(-_): n- k Z eji_ Pe (x_)j:k :l j-k+_

While both Q and Q* are functions of several variables which are

not explicit in the notation, it will always be clear in context what

arguments are intended. We note that Qn(_Xk) is the unconditional

density function of a random vector _Xk if the parameters el, ... , ek

are assumed _o be random variables 81, ... , 8k with a priori distri-

bution function Gk.
n

| 9
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Def. 7) V _, _, V k, n such that i _< k_< n, let _

Pe

j=k _=i P@j-k+_

=

0 otherwise .

Let m and n be integers such that l_<k < m, and n < ®, then

k k2

Skn(__m) is one version of E[BmI__m] _ and _(en)= E[(8 m - Sn(_m) ]

=

Def. 8) V k, j such that l_<k_< J let

Fj[_, ej] = E[(_(__j)- 8j) 2]

where @(- ) is an arbitrary non randomized estimator with a

k-dimeusional argument.

n

V n > k let R(Qg, __n) : n - k + 1 _ Fj[_, _0 ] .
- j=k

R(_, 0 ) is then the Bayes risk in usinz the rule q,(Xk) as .an estimate--I!

of 8k when 81, ..., 8k have the a priori distribut:on (II:'n

We now compare _----I_(0n) with _-l_+l(On) and prove:

Theorem 1) V_, _e, k, n 1 _< k < n <oo Rk(_On ) = Rk+l (-On)�f(k, n, __)) +

h(k, n, 0) where f(k, n, e)> 0 and lh(k. n, _0)I = 011 } unlfor.Lly

in 6).

i0
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Proof :

Let El[-] refer to expectation with respect to Gk and E2[']

refer to expectaticm with respect to Gk+l. /,'or any estimator q)(_Xk+l)n

R(_(__+_),_<,)= E2[(_(_+_) - ek+l)2]

t

: + _.2{[E2(%+II__,_(_xk+_)121

which of course is minimi',.edfor _(__+I ) = E2[_+IL_+I]. Letting %,.

; _(__+i ) = E2[%+IL_+ I] we obtain

_(On ) - .._+l(en) = _(_0 n) - R(E21%+ 1 L_+I], _°n)

' +_.2{{_.2(%+iL_+I)-_2(% d�L_+_)]2).

Let f(k, n, e) = E2[[E2(ek+l LYhg+l) - E2(Bk+ 1 LX_+l ) ]2}

h(k, n, (9)= Rk(_en) - R(_.2[%+_1__+_],--On)

Then it remalns only to show Ih(k, n, (9) 1 = 0 uniformly :in (9. But

since

_(en) = El{_ ] _ EI{E_[_L_] ) and

R(E2[Ok+lL_+l], a n) = E2[_+l] - E2( " l_k+l]]

J

ll
}

| m |
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and since _ !s a bounded interval, say 0¢ _ _ I01 _< B < = we have:

Ih(k, n, 0) 1 < IEl(O_) 2 iEl{E12[ek E2IE_[ k_ -E2(%+I)I�L_]_ - %+iL_+1]_I

and

IE1(e_)-_2( +i)!: _- k+_ oj- J:k+1

° II 2 k)e_
- (n- k + l)(n- k) - J:k+l_ ej + (n-

<
--n-k+l

Also

IJ=k _ _:i J-k+_ J:k_i

tz_o <x,> "-_+_-
\ J=k _=i J-k+_

2

e Pe (x_) _ Pe (x_)
/,3:k+1 _:-I dl-k+,_ ,,l:k+i ,,l-k+n r_(d_)

- t 'n ._ -n-_Pe (x_)
J=k+l _=I J-k+_

For fixed _xk the expression inside the braces may be written as

2 2

{l I }an + a bn n

-+b n-k+l"
bn

12-

|m m
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n k k

= _ 0 _i Pej (x_) a = ek _i P8_ (x_)

where
an

j=k+l J = -k+_ = '

n k k

b = Z ] pej_k+ (x_) b = _ p%(x_)n j=k+l _=i _=i

and

+ 2 b +b 2 b J

Ib + n-k+l n-k
n

+a):_-(n-k+1'(bn+b)a21
(n- k)bn(a n - • n

: (n k)(n-k+ 1)(bn+S)bn

, 2 2,., 2 2!t (n - k)(2b a a + b a - b - bna - b a n

n n n an

= (n- k)(n- k + l)(b n + b)b n

2 °

--n-k+l +b_
: I

2 2

{I IIbani+1 Sn [

i (n k)(n k + l) bn

+

- + b (bn + b)bn[ .)"
f

From the definition of &n' bn' a, and b it is clear that

a

[_[ <B._ [b[ <B_ bn_>O b >0_ so that
n

13
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i b< I I_,_1<

t 2I l+nj<
Thus we have

4B2b + B2(bn
< --k + 1 (n k)(n k + i) _(_d_)- n - - --

- n- I. + 1 = .If(_d_)

Rk

+ '(n k)(n - k + i) =i
Rk

n __ T-_ej.k+_(_)B2 r _=k+l _=!
+ a " .(_az_)n-k+l n-k

Rk

4B2 B2 B2
= + + .

n - k + 1 (n k)(n - k + i) n - k + 1

14
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i Hence Ih(k, n, _8) i < 7132
} -n-k+l " ,

ca E

The implications of theoreL_ i) were discussed in Chapter I. We now

state and prove a genera!ized form of a lemma of Samuel [ll].
J

i Lemma i) V 8_, k_> i, n>k

1 n

n- k + 1 _" E[(, ( ) - _< _(8n)
l=k

- %,

, Proof: Fix _8, k, and n. Using the expressions Fj(, k, _8_) and "

R(,ki, _8i) given in definition 8), and observing that R(,i+l,k 8i) _> Rk(_i)

we have :

n

n k + i _ E[(_ _ - Of)
i=k

J=k j=k

- n - k + 1 i=_k (i- k + 1)R(%•, __i) - (i - k)R(_, , __i.k)

n-i

1 _ (l- k+l)[R(*ki, E).) k" R(@kn, en )- n - _ + ]. -.,. " R(_i+l' -ei)]+ -i=k

I

< R(*kn, _8n) = Rk(_n).

!
Q.E.D.

15

|

1966007313-018



,°° _ P

Def. 9) A decision procedure k = ), 2) , ... , -

k
_n(Xn), ... ) is asymptotically optimal of kth order if

i n ei)2 ] ]Z E[((p#__- " ..R_(-en) 5 0V 2 a

n-__ i=l

mf Y_ sup n _TE[(mi - -Rk(2n) 5 0 then _ is
n-_ ,,o_- e i=l

unLform_j asymptotically optimal of kth order.

We shall now state and prove a general theorem, which with its corollary

will enable us to obtain the results of Chapter III.

Theorem 2) V bounded interval G = [G, 6], family of densities 5, and

k
integer k _> l, let _ be a decision procedure such that V i _> k

P[q_i(Xi)¢_ ] = 1. Suppose there exist non negative functions _i(_e,_Xk),

_i(_e,Xk) , and ai(_O) such that V O, _Xk, i _> k

a) P[l(pk(xi) - ".k(xk) l > _i(e, _Xk) J__i = _xk] _< _i(_e, x k)

nb) lim _ E[_i(_O, __i) + _i(_e,__i)]Qi(__i) _> ai(_0)]
n-,_ i=k

n }+! Z a%(_) < ai(2)] = on
i=k

uniformly in 0

k
where the functions Qi and _i are as given by definitions 6) and

7).

Then the decision procedure _k is uniformly asymptotically optimal

of kth order, and moreover

16
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g

n

' Z "" 2(_- _ r _[e + (_ - o_)_jai >a.]o)< """ l)(_- _1_.
n" -- -- n _i

i=k1

1
t
.A

i + 2(_ - _)2 n
PLQ1 < az

1 i=k

)

k k 0) is given by definition 4)! where _n (_ ' --

k k O)Proof: Clearly it is sufficient to prove the upper bound for _n(q_ ,l -
'l

is correct°
i

i
1

We first represent gk as a sum of several functions, and then examine

n _..
each of these functions. We shall consider k and n fixed° "

i Let :

i k-1
2

%(#,_e)i _ {E[(_-oi)] _(o)]_
i--1

n

H2(_ k, 8):in Z [E[(9k " 8i)2] " E[(* k - 8")2]]1
i=k

i

n

H3([Pk , 8> = 1 i_k [E[(gki-8i>2] - Rk(-Gn>] "

For the remainder of the proof we delete the superscript k° Clearly
n

_n(_'_)=_ _ _[(h"ei)2]"_(_n)
i=l

= Hl(_, _) + H2(_, 2) + H3(_, it) °

2] _ _2 B2Let B = (8 - _). Then E[(gi - %) < and Rk(_n ) _ ; hence

HI(_ ' _) < (k - I)B2 . It follows immediately from Lemma i) that-- n

H3(_, _) _ O. It remains only to examine H2(_, _).

17
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n
1

i=k

n

<2__BZ Eli%-)ill-- n
i=k

n

< 2_B _ min [E[I_ i + B_il] B]-- n J
i=k

n n

< 2B _ E[_ + B_ilQi > ai]P[Qi > aiS +'2B-_2 _ P[QI < aiS
-- n i=k i - - n i=k

The desired result follows immediately.

; Q.E.D.

Corollary. If condition b) of theorem 2) is replaced by

b') lira E[_i(_e, __i) + _i(e, __i)] = 0
i--) CO

uniformly in e

then k is uniformly asymptotically optimal _n the k th order'.

Proof: From the proof of theorem 2) it is enough to show

li--_ [sup H2(_k , e)]._ O, recalling that H2(_, _) is a function of n.n_ _ e

:1.8 m
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?
i

!

I ,n

! But H2(_, __)_<2__Bn_ E[l_i " *i 11
i=k

n

_ _k)+ _< 2_ _ E[_i(_e,-i i(-x-))-- n
i=k

-* 0 uniformly in e as n-_ _ since uniform convergence

implies uniform convergence in Cesaro mean.

Q.E.D.

We turn nc,.rto several lemmas which will be useful in Chapter III. _"

lemmas 2), 3), and 4) will be used to establish condition a) of theorem 2),

while lemma 5) will be used in evaluating certain limits

The first of these is an inequality proved by Hoeffding [2 ], which!
we state here without proof.

Lemma 2) If XI, X2, ... , Xn are independent and a_< )[i-< b

for i = i, ... , n then V t > 0

2
It|

<
n

] _ Xi •where X = n
i=l

z9

n m
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Lel_ 5) Let Xi, X2, ... , Xn 0_< X.1._< b i = i, ... , n be

a _equence of random variables such that for some k > 0 and
°

V i = I, 9, ... , k the random variables Xi, Xi+k, Xi+2k , ... are

mut_aliy independent. Then

2
-9 n .52

k(n+k)
P[JX - E[X]] >5] _< 2ke

v where m is defined as the integer suchProoi: Let S = /
i -- "jk+i

J=3

n i <m< n Si]that _ - _ _ and XI = 0 for _ > n. Let 7i = E[ . Let

5n

A. = _vent .ISi - 7i[. >--_. But S. is the sum of m + I independentI -- i

randon variables and from iemma 2) we have:

[mP[A i] = P i Z Xjk+ i - 7il _>--
- j=O

- ]= Z Xjk+i" 7il _>k(m + i)
j=O

-2(m+l)
< 2e k2(n+l)2b2

2
n 5fi

-'_k(n+k} 15
< 2e

2O
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So tlmt :

k

P[ 'X - E[X] , -->5] = P['i=_l (Si - 7i)' _>5n]

' -<P[i=_I'81 - 711 _>Sn]

= 1 - P S1 - 71 < 5n .
: i

[!.:]_<1-,, _

= Pi _l A ___ P[AI]1 1=1

n2 82

< P_.ke-_
m

Q.E.D.

Lemma A.) Suppose for non negatlve random variables X1, X2

P[IxI-_iI->51]5 "i i=i,2; _i->o,_2>o;_,_dB_o isam
_i Xl

number such that _22 -<B <-. Define W = mln[_2 , B] (if" X1 = X2 = 0

we take W = 0). Then

1

P[Iw-_1 _>_ (51+ _2)] 5 _ + _

21
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: (ixI-_ll+Blx2-:'-,I) "

Case i) W < B. If X2 = 0 then XI = 0 and

lw-'hl=I%1<5 +B=: _ Blx2"21)_2 _ -"2 _ (Ixl":I* -

If XS _ 0 then

_2

<! (Ix,.-,_I+Blx2-_21)
--I*2

xl
Case ii) W= B. Let 3[=.-_-.The. 3[{d0 and Y>X e-

_ -,'_l+,_Ix.-_oI)
_<_l¢1%_-%1 +B¢%-x2)-</2¢lx: . _

From this fact we _ve

ILl <. -I .(o_.:%)i% - %! <_-, a,,a Ix2 - '-'._,1< to.=_'iw- :_1 _,_,

22
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! M1 _i

! _ % (8_ �_2)1--1- P[!w- _21<_2(81+ Pal

1 _<l- P[jX1-_ll <51 and JX2-"21 <521!

: = P[Ixl "li >81 o, Ixe "21"8_]t

< ¢i + E2

!
i Q.E.D.
!

Lemma 5) Let F be an absolutely continuous distribution

function with corresponding density function f. Let

% = {x: If"(x)l _< M and r'(x) is continuous]. Let

D= {_: Ir'(_)l >o1. Lety_(_, ®1.

i) If there exist M <_ e >0 such that: yeD and0

[x: y <x <y + Eo]_c mC'" then V e 0 < e < _: '

1

J f(x)dx : f(y + pE) with iP - 1; <
2M

} _ _ 2,- ._lr'(y)l _
Y

> 0 such ',.hat:y_:D andil) If there exist M < E°

{x: Y - _o < x < y} c C1_ then V _ 0 < ¢_< ( .

f(x)dx = f(y- PE) with IP- 2' _ ¢
y-_

23
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Proof: Usin_ the mesm value theorem m,d the Taylor expans_o,, we have

..
in case i)

Y

wher_ o<p<l a.d ySx_<y � �But :

1 1 f(y)c _c2 ¢"x' c}
Y

where y_x' _ y + E.

Thus

r."(x_)Cp,)2 r'Cy)c r"Cx')2
f'(Y)P_"+ 2 =-_2 +-- 6-

(p _ l)f,(y)= (f"(x') f"(.x_) p2)6 2. e

Ir - '_1If'¢y)l < - J+ ,---._

Ip-_I_<l¥'(y)l6 _ _=3!t"Cy)l•

The proof in ease i_) is similar.

Q.E.D.

24
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J III. Main results.

We now turn to the task of finding asymptotically opti_l procedures,

i bounds, and rates of convergence for specific classes of distributions.
i

"_ ;Je shall also look at a modification of our problem in a very general

!
class of distributions. Finally we shall consider the "empirical Bs,ves"

j problem.

i The notation we shall develop and use is inherently cumbersome; _o

i ease its burden somewhat we shall not always indicate all possible
&.

i "dependencies and shall not always indicate one or more of the arguments

:t
of a function. Hopefully no misunderstanding will arise because of this

pratt ice.

A. A special discrete class of distributions.

We first consider a special discrete class of distributions defined

on the non negative integers as follows:

i P[X = xle] : pC(x) = #%(_)g(x) x = 0, l, 2, ...

t
where" i) Oe a = [0, 131 0 <13 <_ h(13) >0;

ii) There exists M* <_ such that: V Oc_ EO[_I <M*

iii) There exists M' < _ such that V i, j = 0, i, 2, ...

such that g(i) g(J) _ 0

25
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iv) If _ < i then there exists a constant b such that
l

g(x) < xb for all but finitely many integers x.

If _ > i then there exists a constant b such that

i
g(x) < x----_for all but finitely many integers x.

-r

All of these restrictions are quite mild. The third prevents g from

oscillating wildly as it,Largument progresses through the integers. The

second and fourth conditions restrict slightly the rate at which

8Xg(x)-,0 as x _.

Examples of such a class are:

_rp__ e h(e) g(x)

Poisson [0, _]_ < _ e x--i

geometric [0, _],_ < i (i- 8) i

negative (i - 8)'_ a > 0 Fa + x - i I --
binomial [0: _ ],_ _ i !

a assumed known _ x
| ..

The conditions are easily seen to be satisfied.

k
= , j)Recalling that xj (Xj_k+l, .. x j = k, k + i,

..@

J

we define: Yj(x k) = _ J = k, k + i, ...

[0 otherwise

i
1

Pi_-xk_' " " _i-- k + h _ zj(_x,.)._ i - k, k + l, ...J'*'k

26
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g('_)Pi(_l' _2' "'" ' h-l' _ + l)
I i(Xk + l)Pi(Xk ) if g(x k + l)Pi(_x k) > 0 '

0 otherwise
I
J

i = k, k + i, "'"

- if i = ]_ k - 1t 2 "'" _

i -_(_i)=_ _(_)__ o<n(_)<__._ _=_,_+_,...,
if __<_(_) i : k, k +_, ... ,

Theorem 3) For the problem defined in this section

, _k, ) is uniformly asymptotically optimal

_n(_'-_) ]__o___l
order for k = i, 2, "'" , aud 2 ._<B(k, n) : u%---_l;T I.

Proof: We shall show the conditions of Theorem 2) are satisfied.

Fix k. Fix 8

Recall Qi(Xk) ,:i - J=_k PSj_k+_(x_ ) i : k, k + ]., "-"

We observe that there exists a set R. _.r,k dimensional space such
i

PK._i_Ri] = i and _XkgRi _g(Xk)Qi(_Xk) > O. We then h;._ve
that

Xk, Ri_g(x k + 1)Qi(._Xk) > O. V_XkgR i we kn.ow from de.l'in:[t, tou 7)

that y i > k:

27
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i k x_

J=k j 0j_k+_h (0j_k+_) g(x_)k

_i(Xk) =

%!k+_h( 0j_k+_)g(Y'_)
J=k

g(Xk)Qi(Xl, x2, ... , Xk.l, xk + I)

's J = l, i are
We now consider the Yj's. Since the Xj .o. ,

independent it _s clear that V_xk, _ = l, 2, ... , k, the random variables

v_r_k) ' Y __k(_K)_ y£+2k(_k) , ... are mutually conditionally independent

given xk = _k' Also:

kg(x k + i)
Now V_XkER i V 5i(_xk, _i ) _> i - k + 1 i = 2k# '''

we have, usir_ iemma 5):

28
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P[Ig(_x+l)P_(__)-g(_x+l)%(_)j>511_ __]

< p[Ipi k(_Xk). Qi.l_(_Xk)I + li i i- - - 2k+ i _ Yj(_)
" J=l-k+]

• 2k -_1 _Ji J-kJ=i-k+l

i-k+i) j->'g_x_l(+I)(i- 2k+ l)l,X_i=-xh

< P[lPi-kC-xk)- QikC-Xk)I> _i(i- k + i)-- - g(xk + i)(i 2 2k + i) __"

-(_ 2_+_)I_--__

{. li- 2k+i)2 [ BiCi" k+ i) k J_5ak_p 2k_ _+i)-L_Cxk+i)(_2k+_'I-(_-2k+i)
f

b 2k exp g(xk + l) " k g2(x k * l)

kgCxk)
By _ similar argument V_Xk_RI V ¢i(_Xk, Oi) ->'i' 'l_+ i we have:

i P[lgCxk)Pi(xl,...,x_,l,xk + i)- g(xk)Qi(xl,...,Xk_i,xk + i)I

- - Lgt_k) k g2(k) ¢

29
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We are now [n a position to apply lemma h) to obtain the functions

_'i and _i for (.ondltion a) of theorem 2). If we substitute in

s

k •

W = _i(Xi)

h = g(xk)Qi(Xr,"'° ' Xk-l' xk + 1)

P2 = g(xk + l)Qi(-Xk)

Then we have V i = 2k, 2k + ], ...

_i + _5i ]

o2 282i¢i-k+l)4_i 1e "el(-[-k+i) 4¢ i .....

kg2(xk) + _ kg2(Xk+l) + g(xk+l)
_<2X +e

Recall the above inequality has been shown only for _Xk£Ri , i _> 2k,

kg(_ + i) kg(Xk)

8i->i - k:+ i _J _i -> i :k+ i " If any of these conditions should not-

hold we shall use the trivial inequality

k olx_ : xk] 5 1P[l_k - _±1k

3o
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1 1

Let: _i = Qi(_xk)g(xk+ l) _

i

T

++l) k 2
@

We have now produced the inequalities foz =ondition a) of theorem 2).

_ .
i We must now choose functions 5i(Xk, _el), ei(_Xk,_ei) subje:t to the

conditions tha_

k g(xk + l)
8 < _ 5i=0i i- k+l

k g(_)
¢.< _ e. =0
] i-k+l z

and show that for Qi and some ai condition b) of theorem 2) is

satisfied.

We first prove the following lemma.

Lemma 6) For (Pe: _¢ _} defined _n this section V k = i, 2, ...
V c 0 < e < 1 there exi_ts a constant M = M(¢, k) <_ such that

V ecg'__ , V n : k, k + i, ... , n _ 1

P _ (Xi.k+_) < i¢ ..<Mn£ logk
i=k J=k 1 .

31
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Proof. We first consider the case k = i. Let d be %he smallest

integer such that g(d) _ O. V m = d, d _ i_, -" , V ee_

O0

, ),_.Pgtx =

X=m98(m) : x=mX ex-m

) d-!
v 6:%(e)g(y) t_(_ + m) + _ _y g(y + m)= C h(O)g(y)g(m) g(m)

y=d " y=O

M" o . °%

< _ wh_e M" < _ from condition mzm) and the

easily verified fact that h is a decreasing function.

Also it is clear that _ @ there exists a smallest non negative integer
i
I--. .e

mI such that ]" PO (m_) < 2..
: j=l J

i if a <b

Let I(a, b):

0 otherwise .

Then:

I"

n - i ] n_ [__l ipOi(x )
!v (xi) = _ _ i Pc¢x),i_Pj L Pe <ie

i:I _j=l j i:l x=O J- j

n

_<Z _ po(x)
i=l x=m. l

1

M" n

-<_ i:iZPei(m i)

32
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Now _ P0j(x) = _ 0?(Sj)g(x) < 16xh(o)g(x) so that Ifj=x 3=z
X

"h(O)g(x) < i_-I then "i <x. But _xh(Olg(_ ) > ic'!

=>xzog_ +xogg(x)_ (_-I)xog_-xogb(o).

If _ < i then we have from condition iv) that

x Xog_ + _ zog x > (c - l) log i - logh(O)

Io_h(O) b xog_< i - c log i + +=_ x_ 1 i " c -_i_---E I_.

log_

i

!
1
] =_ there exists M_'<_ such that x <M "'log t for i >1.

t
i If _ > i then we have from condition iv) that

i

!

i xxog_ - (x-h)xog__>(_-x)x_ i-logh(o) .
I
I
1 _ x(x_x-log_)_<(1-e)xogi+zogh(0)+blogx
I

i But x >_2_1og x - log _ > log

so if x>_2 _ 1 then also x_<Yog _ log i + _i- e +_=1 - ¢ ]"

i
If _ = 1 then if x > 1 also x < i - e log i + + .... x

--log x i- ¢ !- c .j"

In each case there _exists M'"<_ such that x < M"' log i

for i > i.

33
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Let M_ be the smallest integer such that Mi > M"' log i for
M

i > i. Then 8 ih(O)g(Mi) < i¢'I and hence m i <M i. Now let

Iv = [i: i = i, 2, ... , n and mi = v] for v = i, 2, ... , Mn-

Let i v be the greatest integer in I v . Then

_ pe.(mi)IP r <i_ <h-C_ii:I j-_ : i
M

M" n

:h--67v:1_ i_ P°i(v)
v

M
M" n

<h-K_ _ (iv)c from the definition of m.-- v=l I

M" M

_<_ n_<M c logn .

This completes the proof for the case k = 1. We now consider the case

k > 2.

P (Xi.k+_) < i
i=k J ._i P8J-k+_

i= x = Xk_l=O Xk=0 J= _=i -_=i i-k+Z -

+ _ -.. _ I (x_),-_
i- Xl:O Xk.l=OXk=mi J= _=I J_] PSi-k+_

I
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where m. is as defined for the case k = !. We shall now co,_sider the
1

two bracketed parts of the right hand side of the last equation separately.

The second bracketed expression is clearly seen to be less than or equal

to M*n _ log n for some M* <_ by the argument used in the case k = I.

The first bracketed expression can now be bl.oken up into k expressions,

k - 1 of which are less than or equal to M*n c log n with the remaining

expression being

m.-1

n i mi-1 i _[ 1 _i
i=k Xl'-O Xk=0 J-. _=i J-k+L = POi-k+Z " -:

1

, But for each (k-l)-tuple of possible values (Xl, x2; ... , Xk_l)

i either I PO (x_), ic is zero for all
i J- _=I J-k+_ J

i xk = O, i, ... , m i - 1 or there exists a non negative integer
a

i ak,i(Xl, ... , Xk.l) _<m i - i such that the. indicator is ze_-o for ,

i Xk = O, i, ... , ak, i - i, and one for _k = ak,i" We may now use the

1 same arguments as in the case k = i, for those (k-l)-tup!es

(x.-±.... , Xk_!) such that the indicator function is not zero for

xk = O, i, ... , m.m - i, to show that

n mi'l i k
_ I [ _k _ (X.), ic] p:: (xp.)

i=! Xk=O J P,=IP?J-k+_ P,=I " t-k+_.

r

< Z P0
-- i=l Xk=ak, i ,=i i-k+_,

"i

35
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M,, n k-1

< _ _" p9 (ak, i) ' p_ (x_)- i=q i _--i_i-k+_

M" M nC
n

<
- hcf)

Thus:

m.-I m _i
n 1 i - [ i k _7 k

" '- _ _ P9 (_)'_ , P_ (x_)
i:k x!=O Xk=O j=k _=i j-k+_ J £=i i-k+*!

M M m_-i

- '_ i_l' Po (x_}
-- i=k Xl=O x__i=O Xk=O j _=i j-k+_ = i i-k+_

M M c
n n M"Mn

n '"

< _ "'" X h(_)
Xl=O Xk_l=O

M"(Mn)kne
_< h(6) •

Upon combining the above result with the pre_ious k inequalities we

have the desired conclusion, and the proof of the lemma is complete.

36
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We turn now to tbe task of showing condition b) of theorem 2) is

satisfied for a suitable choice of _i and _i" The theorem will

give us an upper bound for 8n(_k, _8) and we shall then see it
then

has the claimed rate of convergence to zero. R_calling

Qi : i- k + i _ , P8 (Xi_k+_) i : k, k + I, ... , n
J=k _=i J-k+_

1/4 1 n

Earlier in the proof we sho,.,,edwe (ould take _i = Qig(X i + I) h

and
_i=2k [ +e ]

!
for arbitrary functi.ms 5i and ¢i such that

kgCxi+ i) kgCXl) :
5i _ 0=_5_ _>i ~ k+ i ei _ O_el._>__k�i

log i
T,ct i be the smallest integer such that .... o k- - +I

0 V_- "0
0

and such that i > 2k.

37
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(_oie g(X i + i)Qi log i i

ii/4 ----- if Q_ >ii--i7$ i = io, io + Is "'"

i

0 otherwise

g(Xi)Q i log i I

ii/4 if Qi >iI-_75 i = io3 i° + i# ...

¢i =

0 otherwise

Then V I > I-- O

< M_ _ since from condition ii)

F g(;_i)4
E[g(Xi+-1)J-<

,_u_ E[_il% > a_]P[%> ai] < io_ [M*+ 6]- , I/g

38
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Using the definitions of 5. and £. we have1 1

_i 4k exp I4 Qi log i 2 Q_(i - k + i) log2 i_: L i_/4 k_ ] u

_, whenever Q_ _> _ Thusi -

J

1

F4 2El"IQ_:>_j.-L_i >_l--_<4kexpi 1__i - - - L il/4 ki
- %,

noting Qi --< 1.

Col]__cting terms we see that condition b) is satisfied and

_n_ k n log i
I ( e) < (k- I)B2+ 2__B[i - k + (M*+ _q)' n n i_o i=io _ -.

. 2(i-k+l) log2 i + 4 log i

n ki ii/4I q

: +4Bk _ e J

i=io

+ 2B2M logk n

nl/4

for all _acg,'_.

We have now given an upper bound for _n(_, _e) for all n, and it

remains to find the rate at which this bound goes to zero. Exm_ining

the various components of the upper bound we have

59

1966007818-042



and: -_" o

2_ (M*+_) V zogi= 0
O

2(i-k+l)_log2i + 4 log i
n ki _--

4__.",

©

2B2M io_k n A_lo@k nl

n_/4 =°In_/4I

(_o__nlHence <(_, _e) = 0 nl/4 ] uniformly in _e.

Q.E.D.

We observe that the sum of :c independent identically distributed

random variables, each with density function pe(x) = eXh(_)g(x), has

the density _mction fe(y ) = eYhr(e)g(_')(y), where g(r) is the

r-fold convolution of g. Thus the density function of the s_n has

the same form, and if conditions ii), iii), and iv) are satisfied for

g(C)(y) then theorem 3) may be used even if the original problem is

modified to allow r independent observations for each el, observing

that the sum is sufficient for ei. For the geometric, negative

binomial, and Poisson families g(r) satisfies the conditions.

4o
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B. The modified negative binomial distribution.

la + x-i%! a _aI e Ix

Let P[X --xle] = Pc(X) = " x l i_ _I _a-_I

x = 0, i, 2, ... a >0 0 <@ <8 <_ .

This reparameterizationof the negative binomial is of interest for two

reasons. First V a,E[Xle] = e unlz_.- the usual parameterization.

Secondly the form of the decision procedure is different than that

usually encountered.

In this and the following sections we shall not give as many

details as in Section A. The method of proving asymptotic optimality is

similar in each of these sections, and _._y be summarized as follows:

Since _k(_xk)= Qi-_- when Qi(__)>0, we seek an estimator
f

Pi(xk)

q_k(_xk) which is for "most" xk equal _ a ratio _ , such that

E[P i k(_i)IX_. __xk] * and such that E[P I k(_t) Ixki _xk]- - -I = = Qi-k(-Xk) "- -" =

= _,i_k___k/.'' _ _en using the methods of Section A the functions _i

and _ may be obtained for condition a) of theorem 2). It is then

only necessary to show either condition b) or b' ) holds.

41
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Let:
k

] if xj--_x k

•j(__)-
0 otherwise

a+i-1)
a.I i = O, i, ...

i
g(i, J) =

i + J J = i, 2; ...

g(xk, t) if there exists t = i, 2, ... such that

__j = (Xl, ... , Xk_l, xk + t)

zj(__)=
0 otherwise

i

pi(__)=j--ki-k+l

i

(__1=.J---_Pi- i - k + I

Pi(-_I_)

_Cx,.)=
0 ctherwise

42
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if i = i, k • i
2 0o.

if _ < P_*(_)__ i = k,_ + i, ....

_singt_ea_ove_e_initions_eshall_owt_at_= (_,_,...) i_
uniformly asymptotically optimal of kth order and _( k 8) < B(k, n)

: _#io6k n)
: °l nl/4 ° i k _

; (_) i Z ]]Poj.k+_(x_) "_ Recall Qi = i --k + i j=k _=i

__) iQ_( =i-k+_ Z e pej_k+_(x_)j=k j = •
i

We observe there exists a set R. of k dimensional vectors such that!

1 P[_ cRi] = i and _XkCRi_Qi(_xk) > O. Thus for i_>k and _XkeRi,

Q_(__)
_k(_xk) =_. For i_> 2k, XkeRi, j = k, ..., i- k we have

k

E[Yj(_ ) _ =_xk] = (x_)= -k+_ °

1,3
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_7_ &iS 0 :i_y_

E[Zj(._i)I:_i_ = Xkl = _ g(:_.,t)p84(x_= + t) p_j_k+_(x_)" t,=.l _

But

- oj-'tg(x, t)p_<x + t) = a
t=l _=i x #_'_I _-_

= e_,e(x)

Hence:

i.

i-2k+i l ¢_),_Ai"_i-_"= I k + .1 %-k(_ ) +-_.-k+l _ _'[Y,3- -- =
J=i-k*-1.

1

J k + i - -- i - k + i J=i-k+l

Th_ remai;_er of , ,e p 'oof follows that in Section A).
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C, The binomial distribution.

18 X a-x
Let P[X = xig] = Po(X) = (x)O ( - 8) x = O, i, ... , a where

a is a known positive integer and 0 < 0 < i. For this family it is

necessary to modify slightly the definition of asymptotic optimality.

Robbins [5] and others have demonstrated why this modification is neces-

sary. Let Rk,a(_8n) be the kth standard as defined in definition 3)

with the parameter value a. We shall develop a procedure _ such that

__ _ ,a_l(-%)c) liraCsup[Rn(,_e)-_ ]}_<0 .
! n*- 0

t. Such a procedure will be said to have property c). In addition we shall

, Rn(__, _e) - Rk,a_l(_en) _< uniformly in _e. ,
i °

We shall i'irst exhibit a procedure having property c) We shall

then introduce a new procedure which not only has property c) but forl
i

} most 8 actually improves upon the original procedure at each stage and
i
1 produces strict inequality in equation c).

We first assume that corresponding to every obr_.rvation X we haveI

available the related observation X' which would have resulted had we
observed a binomial random variable with parameter a - 1. For example,

if X is the number of successes in a independent Bernoulli trials

with p1_bability 0 of success, then X' is the number of successes in
z

the first a - 1 of these a trials. %_.ile in most situations this

assumption will hold, we shall see later that it will not be needed.

45
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Let :

(xI x_) if _:o-k+l' "'" '

_°

cx}._+l,, ...,xi._l,xi) if _:i

k

1 if X_" =--_0 --Xk

Y.(__) =j--
C elsewhere

+ i if _ : (_!'"'"'_k-i'_ + i)
Z.j(__) :

0 otherwise

i

Z Yj(_)
_=k

Pi(-Xk) = i - k + i

i

Z zj(__)
^ y_Pi(--Xk) = a k + l)

Pi(_Xk)

i_ Pi(_)>o
_(__) :

0 otherwise

46
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f 4

1
if i = I, ... , k - 1

20) If 0 < ) < 1 i = kj k + I, ...

1 if 1 < ) i = k, k + 13 ...
• 30

We shall now show k = , .. j has property c). We shall

proceed as in the previous exaalp!e_, noting that theorem 2) is still true

when the proper;y of as_:_ o:;ic optimality is replaced by property c).

V i > 2k leT.:

a- 21. _ _. _a-l-x,,_

%(xO = i -_ + i x_ "j-k+_" _- -" J=k @J-k+_(l

R. be _ set of _: dimensional vectors such that
1

P[_X_iO_li] = I and 2_:¢_; =>Qi(__.) > 0 . -_2 -- "-' --
,2

For _XkCRi we have for the parameter a - i:

i- k+ i _ o i a- i Oj_k+_(l_Oj:4;_)
_(_)= ,:l=k j _ x_- .

4

k

~
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NOW for " ,"..... L - k

I-

-[-j(-')Iz-( ]--j '_.. -.Cr.

• : :c +I " • ::.-'.-x/,•'.-;%-] i%_i _a- I X

= (:<j+ _-]! ,:: (!- E ) : _i J'J-k+_ ' ' '
_: ("_" ] - :J-l-+_"

'_. -.-_:+ ,,; J .j x1

!"% :a- '_ x- a-l-x_

-_ / "): - _ ,- 6j_k+_)
= a=j :' _.j_k+_,i -li

£i] :,,_

Thus arguing _s i. S_ctio_) A)

P[ cxi) ! ]-- "i'--_ff --Qi(Xk) (gi �5i)I--_jt.O.= --Xk < 4ke " - :t :

k
for 8 >

i--i-k+l "

We now look for an upper bound for the quantity

P O (Xi_k+_) < I_ . _e shall show an upper hotrod is
i--k J i "Oj-k+l

(a + l)kn c.

n[ A

48
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= Z ..o Z Z z (x_), J._ (_).
Xl=O Xk=O i=k j- i i Pei-k+L

For any fixed _Xk, x_ = O, I, ... , a _ = l, 2, ... , k. There exists

a subsequence of integers (iv} (posE ibiy finite) such that
• i k

i' POj.k+_(x_
i ) < ie<=> i = i for som_ v --l, 2, ... Let

j=k _='i v

i --O. But for all n > k there exists a v such tb_t
0 -- n

' i < n_ v < v and:
t v- - n

i E -p _ E ' POj_k+l(xl )' ic _ (x_) "i=k kj=k _=i i i-k'l

i
• V

: _ (x_) iE _ n .
i = Vn "

| -
i Since there are (a + i)k- different _x% to sum over, we have shown

t 'the claimed upper bound holds.
J
|

It is now easy to show, using an argument similar to that in

] Section A, that an upper bound for Rn(_,__ __) is
1 -

k-l+2 4 n-T- n(i -k)+- Z _
o n nl/4

0

n [4 io_ i 2(i- k + I) 1
+ 8__k_ exp - log2 in ki

i=i [ iI/_
0

+2(az+/4l)k
n

I I

49
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and c..],_':_:- ,"-".,:is up,e::- bound is un-formly of the order -__!4_- " The

Yn th_ above procedure w_ chose at times to neglect the results of

_he "ath _ _l" -,-,_ of the observations. This cboice of which_,_-.:_ it: ....ny

i:_ol-_._,atio:'.tc neglecT, was quite arbitrary, anl it is easily seen that

the abcve proof does not i_pend on which trial's information was neglected.

We may thus conclude that if in some situation the related observation

_::' is not obtainabl_., we _:_ayconstruct a new X t which will do as well.

Azlexamp]_e will illustrate. Suppose a = 17 and X = iO. Wi%h the aid

of some rm]dom device we let

9 with probaoilit.y 10/17

X' =

i0 with probability 7/17

This X' will work as well as the original X'.

_k k
We shall now exhibit a procedure q_ which improves upon _ At

.th k
the l stage of the decision problem we could have defined q_i in

any one of _cveral different ways, depending on what irrfo_nation we

k
chose to neglect. _or fi_xed i _> k and _v]< the_'e are _- ways to

define --JX_ and hence Yj(_)__£_ Thus there are k_" i-k+l) ways
to

,0

5O
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k-I (_)define Pi(:<Ir)-.:. Similarly there are a w:_ys to define. Zj and

hence a(k-l)(i-k+l) ways to define Pi(_Xk). Thus there are

a(2k-l)(i-k+l)
50 define P_(_Xk). From the above, and observingways

the _.. used in i"P#( 0_ could have different
definitions t we

--l,O

see there are at least at2k-l)_i-k+l)+k ways to define the random

1%1%

variable _i(Xi). Most of these different definitions will result in

essentially the same estimator for large i. We may obtain an improved

procedurej however, by considering some of them.

_ k k
We define ( ) u = i, ... , a as fol]ows: Let u = l, ... , a_ij u _>

k
be an indexing oi" the a distinct k-tuples each of whose elements are

th
{ integers from the set [i, 2, ... , a]. Let the u k-tuple be

()
(tu, 1, ... , tu, k). Let X _ _ = i, ... , a be the random variable

derived from X by not counting the result of the _th trial. For

I _
4

example, X_aj equals the previously defined X' We now define

i (tu, j) (tu,2i (tu, k) :"
_ " _1 ,x. ).

,(u) to be the rsmdom vet-or (Xi-k+: ' Xi-k+2 ' "'" l

_3 if i = i, k - 1

}

_'i,u i ,(u - u) -

i 1 if1<_(_( ) i=k,k+l,...__. u)
i

51
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,~k _

w k kWe shs.11 now show V2, V i R( , _8i)_< ,(_Oi, _el) where _i is
k

defined° We first observe that the _i_u(Xi) arepreviouslyas

k
identically distributed as _i(Xi). Then, supressing the superscript k,

we have

" " _2]RCh, _%)=_[(hC_xi)- oi,

= KLgll - 1 i

k k

- 2k _[_ 1+2 Z' -.-._ _ +o:
8. -- ;U U< V a U:I

.. = E[(_ i_ _ a i E[ ]- 2"--k "a u< v

1 u<_ 2 - 2E[q_i,u 9i,v ] + E[q "v]
= _('h, fi ) - 2-_

.9. V

z Z s[('h,_- 'h,, ,)2]=R(h' £i ) - 2--_
a u<v

< R(%,£i)

we notice s_rict inequality holds unless P[q_i,u(Xi) = _,v(Xi)]. = 1

for all u, v i < u , v .< ak. Thus we h_._e strict inequailty holdi_k_

52
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unless a = 1 or unless ._i is composed of l's and O's. To

investigate the asymptotic properties of _ we observe:

n N -]l_ Z R(%,_oi)-_,a_l(_%)in-+_ i=l

l_n u n _ R(qDi, _i) - 1_ _e )- li--7_.- _ [R(;_, 2i) - R(%, ell] + 1 n
n--, -1--7 ' - ":'a'l(--n)

__n _ (_ %_ )}< L [E i3 -- - - R(_i, e i since _ has prope1_y c)
i=l

_{ I n E[(_i, u @i,v ) ]) ":n-_ i_l a u<v

<0

N

Hence _ has property C)o In order for strict inequality to hold it is

i sufficient that there exists ¢ > 0 such that, with the possible o

i exceDtion of a finite number of values of _, _E[l_i,u - _i,vl] _> _.u<v

] If a = 1 this condition is never satislled. For a > l, however, and
&

for a large class of @ such an ¢ will exist. Let f_ be the set

of --8 such that V @_* there exist _I' _2 such that,.. 4

i 0 < _I < e. < _2 < I for all but finitely many i and such that the

I first distribution function of e does not tend in
order empirical --n

the limit to the d_stribution function of a degenerate random variable.

It may then be shown that a > 1 _e_* implies

E[l_i,u- _i,vl] >, > 0 for all except possibly a finite number

i u< V

of i.
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S_nce the st_ of i_dependent identically distributed binomial

random variables is again a binomial random variable_ and since the sum

is a sufficient statistic for 8_ it is clear the methods of this

section can be applied %o _e case of r independent observations for

each _.o

Do The normal distribution

X

Let P[X__ xl@] =_pe(t)dt
--OO

X lit-012

f l - 71- -
= e dt -m<x<_

2 T£o

for _ > 0 znd -_ <@ < 8 <_ <_

For the present we assume a is known_ although later we shall modify

this assumption somewhat. As we shall see, the estimation procedure

in the continuous case is similar to that in the discrete case. Without

loss of generality we take _ = i. We fix k > i.

Let '
tci, = i; 2_ ... ] tea sequence of positive numbers such

that lim ci log i = 0 and lim i(ci )4(k+l) = _ .

54
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,_-:. ._t Ithc [,l _]J_ensional vector consisting of zeros l_or

all eomI,enents except for the k th which _s eqaa] bo one.
1

1 if y_ - ci < Xj._+_ < '/%+ c.l _ = i, _ l_

Yj,i(_k)--
0 otherwise

i-k

E xj,i(_k)
fi(h)-- J--_

(i-k•!)(Rci)k

fi(_k+°i%)-fi(zk-h_Q
gi(A)-- 2c. ......

1

gi(_yk)
Yk + fi-_ if fi(][k) > 0 and i = k, k + i, .°.

Yk otherwise

if 5_

i _)=_ if _< <6

if _ <_rxk) .
-- i_--i

We shall now prove the decision procedure __k = (q0kjq0k_ o.o ) i_

I uniformly asymptotically optimal cf kth order.
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t

• We shall show the conditions of the corollary to theorem 2) are

satisfied.
k

k 1

i i _ -_ _(y_° k+_)2
" J=k

't

%,._k)= ayk

k
k 1

i _ -_ _lly,e-°l__,.e)e
Q_(.Ifk) = _ 8 11) e

j=k j

Now for any _k 3

- : k . %(-yk)

k

k i E(y_e,k `�€�2i _ -_

But Q_(_k)=- _ (Ykej)J=k

. '=- :%%(,_k)+Q_

Hence *k(_k) Q_C_k)°Yk*_

56
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k k

_=i ,_ v • _= I
e - e[

_i(xk)_!:k J
'i-k+ 1)(_)k/2

for some.Y_k,j such that v_ - ci < y_,j < y£ + ci

= 3, ... _ k. What particular -_k is intended,J1

_ will be clear from the context.

Then:

Y_+% __(t_Oj_k+_)2
I 1 i-kk 1 f_!l e dt

i . YffC i

Qi-k

I - + Zi(_k)
i-k+l

where the -_k,J in zi are those vectors whose components

arise from use of the mean value theorem.

Now: for V i = 2k, 2k + i, ... , Yk6R_, __e2_
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<p [i-_k+1 fi%) i>i-_k!1 _ _izi! k ],i 2k + i - mi(_k) - i 2k + l" i i - k + 1 )

q

but from lem_na 3) this probability is

<2kexpf-2 (i-k +l) k )2(ii)2k_- [ k (_i-Izil i-k+1 2

<2kexp/[22(k+!)c.2k°o22k+I(i- k +l'2k. _ Izij)2_-- 1 1 k )ci (5i 9

kI f

provided 5 -Izil >0i i- k+ !-- "

In a similar manner:

Let :

zi(_k+ %%) -z_(_yk-oi_%)
z_(-Yk)-- 2o

1

qi(_k ) _- i _ kl _'Qi_k(_ _- C#k) m Qi_k(_ _ C#k) _ Ql_k(_)l_- ! 2_° I •

Then

E[gi(_i)/_i = _k ] = mi(_k + cie k) - mi(Xk - cie k)- - 2e.
1

<_k(Z)
- i - k + 1 + qi(Yk ) + z'(y,.)___•
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Hence :

- i= [7 al-> _II_--

{_ + . _ k ,2_ 2(k+l)}< 2k exp 2(i -kk i)(ei Jz_.l - lqil i - 7+ ! )

_(2oi12(k+i)__2k+i2(_+i)i-k+l( 2}_< 2k exp i a k i

= provided e..- IZi! - lqi! k > 0m i-k+l - •

\ Thus, using an argument similar to that used in proving le_ma 4) and,,

letting B = max[l(_l, I_I], .we have: Z

P Jh(xi)-hixi)l->Qi(xQ _i+ mi lYkI6i) -Y_

<2k exp{22(k+!)c[kSi22k+i(i--k+i'2k,o _ lhl)2}_ - _ )C i [° i

_ .2k+l 2(k+l) i k +
+ 2k exp 2ci)2(k+l)ei z - Izll.- lqil)

provided. 5.1 - izil - i - k +l-k > 0

k >0_i"Izll"lqil-i-_+i- "
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To complete the proof it is sufficient to show that for some functions _

i, k
_i[_k t _ei) and 51(_k , 81), such that either eI _> Iz1,1+ lqil +

k
or _-=± 0 and either 6i > "'Izil+ i k + 1 or 8. = O, _he following

limlts hold uniformly in e.

L

[ 2k .k )2 ]i_i)im Ee-!%(h(-x_)-I_i(_)l18i-I_I> k
_ - i_-_ _ " - (_-k_+i)_/_=o

2

•_ _2(k+i)
_v) liraE|e .... I

(i-k+i)i/4=o

6o
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i

"! Let

_ Qi Qi k _

i (i - k + l)log i if (i -k-'+'i)log i -> Izii + (i - k + 1)1/4I

I

-I

] 0 otherw-ise

i-
! Qi Qi - k

1_ ._ -(i - k.+'l)-logi j-f _(l- k + 1)iog_-> lz_.l+ Iqil + (i- k+ 1)11'+"
Ci =

1 :

0 otherwise

|

i Since there exists. J < _ such that E[Ixl] < u -for all Sea; the first _
• _ -wO

two limits hold. uniform.ly.:.j'I_e thi_l and fourth also hold, recalling

iI - _

+ 4(_1) _
-_- limic i = _.

Since" V n > 0 there exlsts S(n) < _ such that PKlxl> s] < n for
i

all e_ll _ we have, _"

• . k ]<p izll_i - Ihi <(l k +1)l/_J- 1- k + 1)log
1

< (l k+ _)1/4 Ixi-k #\_ = l, ... , k + 1- (1- n)k--
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k
i 2

I I_ _/2--_,g,(xl-k+_-°J-k+_)

_J=kl ! < k log i
i

< p e < Iziilog !xi__+_l- (i- k +I)IP; -

+ 1- (1- ,_)k

ifweshowZ_ Izi(xOlzog_i = othe fifthClearly limlt will hold

uniformly in 8_ and IY_I _< S ' = i, ... , k. By a similar argument,

to prove the sixth limit holds we need only to show

lira (Iz_(_k) + lqi(Zk) l)log i = 0 uniformly for O_ f_ and lY_l < S

' = i, ... , k'

: We first consider _ _im Izi(_k)llogi. For y_ - ci < y_ < y_ + ci
i-_oo

' = i, ... , k; V j = k, ... , i

k i k 21]--" o )2 -2_=
le-2",_l(Y_-_ J-k+' _ e _l(Y'-e j-k+')

I

k j_k+_)__ 2
i 2 i k,

= I_ Iil - e I.
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i

: But

21 _

< _i(2S + 2B + ci) for all 0j.k+_ea.

NOW Ixl < i--_ Ii - eXl = IV=I_' t I "-<Ixl (e - i) o

Thus

k • k ,
" (9 2 1 ' e 2

ll-kr-g0_(_,£ J-k+_)-" -___i(y_-J-_+_)q

t

--<-(-2_)k/21-=ci(S + B + ci)(e - i) k for all _e and i suffi--

ciently large.

limc i log i _ 0 we have sho_n llm Izillog i = 0 for allBut since
"-_ .#_ i-9 m

I 'i --O and Y_I _< S _ = I, ... , k. "

We_o_considerliraIz_'!logi. &is l_itis_,orediffio_tto
i-_

.L

! evaluate. By examining the argument leading to the consideration of this

show lira I 'flog i = 0 for Zk such that•limit it is clear that we need only .zi

ly_l< s for _=l, ... , _ _ & 4o_ for j =_, _ +x, .... We
shall use lemma 5). It is clear that there; exists M < (_ such that

i _ = (-_, _) for all e_ D,. Thus we have for i_>k and Yk such

1 that ly_t< s _na Yk4 el _ = l, ... , _ j = k, _ + X, ...
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i-k _:;_. - - ) - -_j)
Iz,f¥ _1 ei_-k jl = _ -------- .e .......... - e

J=k 2ci(i k + i)(2_) k/2 ...............

=G -_P2,j°i

1

oi 2oiYk-2Ci a j)- e (]._o2ci(yk oj))

J

%

6_

I
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i We shall now consider varJous parts of the right hand side of the above

inequality.

VJ = k_ .o. _ i and i sufficiently large:

[ k-11 , 1_

a) Let _i,J = _ _=iv=l v'

_en Iq, jJ < %(e-1)(s+B+%)(k-I)

and e = i + _l,J '

_ _' (- 7 °J. - ciYk+ °'°")v
b) Let = _ ...... Vl""" ....

V=I

thenl:_2,jl_<°±(_-Z)(S+B.-+o_)

1 2+
-_(c i 2ciYk-2ei ej)

and e .= i + _2,J '

_ V v+l

- _[2(yk-ej)]
c) Let _3,J = _ ----TV +l)' ....

then1_3,jl,_.<%(2(_s)_._) ..

"ci£Yk'_j,

......el _ = - 2 Yk" ej ,j

×××-0 ] 0



' 2e#)]v- [-_(y_..**- _1(,x_*_+& -
d) Let _"4,j -- e v!V=2 -;-

2 2

__) mt _5,J= 2ci(#_,J- P2,J)

then ]_5,jl ._<2el

(k_t*-&)(kx_*+& - 2_j) - (kx_*- h_)(__* +& - 2oj)
and 2c..

.L

2e.
1

(Yk + 2Pl _ci )2 - (Yk- 2P2 _ci )2__v ,.v - 4e..I_L(_'Lj + t,_oj)= - , ), ._
2c.

1

,.2,2 2
- Po _) - t,_-_- (r, +

4ciYk(Pl, J + P2,_ ) + *cltPl, J "-,_v "" j_i'__.__"]dZ .P2,.J'
='- 2c.

= 2(& - o_)(_,_ + _2,_) + _5,_ •
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i f) Let _6,J = Pl,J + P2,J - 1

Ipl,j Ip2, _8¢_2__. then l_6,jl<_ - 11 + j - 11 _< ci _:---y :.;,.e

ana 2(yk - Sj)(.Pl,j + P2, j) = 2(yk - %)(1 + _6,j)

="_(Yk-0j)+ _7,J

Using the abeve six results we have for sufficiently large i:

i-k I(1+ - -2(y k (1+ _2, j)_2(Yk-e )+ _5,j) IIzll < Z- q'J)(%'J _'.j -%)--_7'J) �_
-- J=k .... 2(2_)k/2(i - k + i)- _ .....

< M*c. where M* is some finite constant independent of __, i3

and _[k"

Hence lira I'-il_ogi : o uniformly in _8 and _k such that ly_l_<
i-_

= i, ... , k and Yk _"ej J = k, I;+ I, ...

Wenow consider lim .Iqi(_y_)llog i for ty_l < s ._= 1, ..,, 1._• i-* '_
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t-k "-J=Z Y"-_ _'_-k+'e { .- )_ -_(Yk j)2
_ l i" -e

%(zk): - _(i-k+i)c'i

k

_L _y -e .)2
i-_ k/2 %f{_ j-k+_

+i-k+l J •
J=k

So

-(yk-_i-_j)--

.
Iqi(.Zk)! < k - k + I.j=kl "-_;"±

-_yk-o)21
+ (Yk- ej)_ '_ ,1

1 2

1 e - e

--<i - k + 1 J=kl 2c.1

+ (y_:- 01)I

Cl V c. v
. - _ - j)]

_et -- Z [-c_(T+_r_"ej)] " [-_(_ Yk*e
_J V=2 2C:LV" - V=-2_" 2c :iv!

t_S+c.

t._._I_ _<2o!(_: _- l)
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-_(c.2+2c.y, -2c.8 1 2
i I _ i j -_(ci-2ciYk+2Ciej )

and e - e = . + _j .2c. Yk + ej
1

B_S+c

Hence lqi(_k I _< 2ci( e i . i) for all _e,_k such that IY_I _< S;

and liralqi(E )llog.,i = 0 uniformly in _e as desired.

k
This completes the proof that the decision procedure _ is

uniformly asymptotically optimal of kth order. _ was defined for the

k
case G = i. If we had kept arbitrary c then _ would have been

defined in the same ma,mer except that gi(_k ) would :nave been defined

o2[fi% + C#k) - fi( k- c#k)]
as 2c. . If we relax the assumption J

l

kno_i co the assumption c unkno_n_ but equal for all observatio[,s, then

^2
it may be shown tD_t if c. is an estimate which converges in probabilityl

2 2 ,-2
to _ uniformly in _e,we may replace c with ci in the definition

of gi(_k _, and the resulting decision procedure is still uniformly

asymptot ically optimal.

If the problem is modified to allow r independent observations

for each el, then since the sum of these r observations is sufficient

for ei and also normally distrib_,ted, the above procedure will still

apply. We note in this case that if the common variance is unknown,

^2
• is independent of O andthen for each i the usual estimate c_ i4

n
i ,.2 2

c_ is a consistent e_timate for c •
JM

i=l

.i
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E. _n. "'urJaa distr [butJon.

X
°.

I

Let ,7;Ix S xl_] ::J I-_;,(t)dt
0

A
f

""[_t)a-le-atdt 0 < x < ,_
:[a_

O

for _- > O, 0 < _ < 6' < _ -4,,_

We assume a is kno-_n_ and fix k _> I.

Let [el}: Sk' YJ,i' fi' axed gi be defined as in Section D.

Let:

- 1 gi%.)
fi(Yk} if fi(Y_k ) > 0 and i = k, k + 1, ...

a__ otherwise

Yk

_ J_ ;__<_(_xk)

We shall prove the declsion procedure _¢ = (k, qk, ... ) is

uniformly asymo_ot.ically optimal of kth order.

7O
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We shall show the conditions of the corollary to theorem 2) aJ-e

satisfied. Since much of the argtmxent is similar to that in the normal

case we shall omit m&uy of the intermediate steps.

J-k+_ a-i -y_Sj.h+_
Let: Q[(Zk)= _ r(a) Y_ e

J=k

a

___leJ-k+_ a-i e-Y_eJ-k+.tJ=k

;"-,e.u:cr all _- such that y. > 0 _ = _, ... , k ,2,

But

i Fk-i ea ea - [ 1

Yk
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! %

- z Qi(_kjk
Hence _i(Yk) =

Let: mi(Yk) = E[fi(_'__i)I'_i = j_k]

i-_.F._ aO_k+_(_,j)a-i-_,J°j-k+_
I N_ _ _i

_!(YQ=i-k+ij_k[_A-_(_)'

k a -5.g6j_k+_i
_._,._j-k+_)a-i

for -_k,J such that y_ - ei < y_,j < y_ + ci

Qi_k(_k )
mi(Xk ) = zi(Xk ) _u_.a_,__ _,Then: i k + 1 + for _-_. _-_ j_,

CC

ar_ for i = k, k + I, ... _k such that yl > 0 2,= i, ... , k _(i_&'

Ifi(--_i) i- k + I ' - - /fk

_B _ 22k+i i- k+ i 2k-o _ tl< 2k exp 22(k+l)c_ksi k ci (°i Izi[)

provided 5_ - Izil ! - khB+ l--> 0

where B = max I' [ia) e-(a'l)_ '
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zi(zk +oi_%)- zi(zk- ci_k)
!

_et:h(_k): 2c
1

1 Qi-k(]fk + ciek) " Qi-k(]_k" ciek)fv) -__- _ !

qi'zk _ i - k + i 2c. Qi-k'-Yk' "
1

Qi'k(Xk)+ o _,_+ zi(zk)Then: E[gi( )Ixk = J[k] : i k + i- _ _i,:_k, _

and for i : kj k + i, "'" Yk such that y_ > 0 _ = i, o.. , k _86

- {--k + _I_>_il_x_:zkJ

p._ovide__ -I_i'.I-I%1 kB* >oi i-k+l -

where B* < is such that max (p;_(x))k-1 _Po(t) I < B* .

_t It=y --x,y> 0

Thus we have :

r _ ]

, Ik_2(k+1)2ko _ 2)_< 2k exp \_ ci °i _ 2_k+l i - k + 1 2kk ci(h- Izil)

+ 2k exp _J*(2cj)2(k+l)£ - 22k+ic2(k+l) i - k + l( " IZ'I I I)< [t " i i k 6i - qi
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kF

kL*

h -l_._I-iqil -k+I._ o

To complttc _he proof Jt is suff&cient to show that, for appropriate

5i and '-i':the limits i), iii), iv), v) and vi) listed in Section D

hold unifor,m!y in _@, and chat

ri-k+1 1 k]
ii') limi___ , -qi(_i]Ei % •(_+ X_i)Si(-Xi) = 0 uniformly in _O .

Let:

Yk%'Xk) YkQi(Xk) j_2
(i- k+ l)iogi If (i- k + ])logi> fail+ (.i-k �i)l_

81(A)=

0 otherwise

%(zQ Qi
(i' 'l_"+- i)]_og'"_ if (i - k + i)log i -> Iz!i:_ �I'[.I.L

(i- k+ l)i_

_i(A):/

0 otherwise
6
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a

Then limits i), iii), and iv) clearly hold. Since E[X] _<_ for

all e¢_ limit it') alEo holds. V _ > 0 there exist s(B), S(_)

such that 0 < s < S < _ # P[X < s] <_ and P[X > S] <_ for all

e_G . Hence it remains only to show:

i lira Izi(_k)llog i = 0 uniformly in @ and such thal;
y_

s_<y__<S _ = I, ... , k

lira Iz_(_k)flog i = 0 uniformly in e and _k such tha:_

s<y_<s and y_a- l
- - ej
= _, ... , k J = k, k + i, ...

1

!im lqi flog i = 0 uniformly in _e and _k such tha_
i-_

s<y_<S_ _ _ = l, ... , k .L

Now

l,i(xQl<YTv_-i _ .... (_,j)j=k (r(a))_

_ __l y2a-i c-Y_6J-k+_ I
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V J - k, ... _ i - !,: ..... .

,, _

Let ':'l__..= I -_y2

cI y_ cj "..
- ---<_<I+--- "

then y_ ci < _ < y_ + ci=_l - s y_

el

a-l

k ' a-i _'_.-

So that : _.._..lll-_l,_l = 1 + _l- _ -_

where_ for i so large thal, cI < s3

v
Let _2 = V[

V=--1

then I_21 __ Cl (ek_ _ l) for jc_l < 1

and e =
-l+_ 2
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e-_ .i l _, _< l(z- _:z)(z+ _. - z
c

< s_'Z(Iczl"+I_21+.Icz_21)
r.

• C_k) -:"so .thatZlm IzI Jlog i = 0_unifo.rmZy. _'-

We now consider llm Iz llog 2 AS'-'in,the; nozum_l case we .hsil 4._

use :k_ 5). '- '.....:"
2

5 _, 7"

.. ' J:k (rLa)) I - - ..:

__1 L _ L _ __ * J , L J L _ • , ,J, *..-

PC i

a-1 e'Y,lle,..J,-,k+._][(yk+ . e'(Yke'i)eJ-.']I

'= 77
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+

i

• - -aS
_l_(a)e c i v = I, 2 •

i _+t

(+,.,+,_-9 <_ _-3s_.-:+t,+.--,- +'j+'+_i

We shall now consider vsa-ious _Da__+"s of the prece&ing it++xtuaiity for some

fixed J k < J _< i - k. To simplify the+"notatlotl we let :J _k,j

c = ci O = _j in what follOW_- We. assume sufficieu+'!y :a_'(i'-|"

a) Let _i,_= I -_Y_

'/
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a-1

arid

i wh_ lql_<_2(k'1)(_-m).
J!

V:2

th_nI_21< 2
B

_maI_"l = (z + ) = z + + _:2 •y - y

o i..;_1i__1v
o) Let_3= _ ......v'....

V=-2

the.I%.1..<°2
B

79
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I -ard = i + , + t_
Y _4

v

v=2 V v!

"then I_l < e 2 ------2a-i
- 2

s

- [2,,(#:].+ _2)e]v
v=2 v!' -

then1¢6j.5 _2(e_ - 2)
z

_ 2_(pi+p2)e
= _ = i + 2c(pi + p2)_+ ¢6 •

6) _t _7: _ --[(2pz-:)°e]v-
• v=l v!

then1_71<__(_ _)

and ,_:-(Y_'e-x'_) 0 (2r°l-1) eO

= e :-- 1 + _7 '

h) r_:t"s = ,..v'(2ee)"
,-o V:
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!

]
i

i then I_81_ c2(ea_ - i)
}

a_l e2cO = i + 2cO + _8'

V=1 -- - 'VI -

thenl_gJ<o(_(k-Z)P_I)

[| _._.__| a-1 c a-1 e2ee]

i = (i+ gi)(i+ gg) _: "-- - ec ......._ _o_+_4-1_-(_-_!)_o+_oI(_+_oo+%)]

I . q_+ _7___ 7 ,._ _, -./'_ -- =

_C

3.1.
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- i 6) + _I where I_! < cM* for some finitel(pl+_ 1)(ay

constan.t M* independent of yk#

e, o_ j.

-- ' y 2' y

< cM** for som_ finite constant )_ independent of _%_, _0, or J.

l(Zk)'1Hence lim iz {_og i = 0 uniformly in _ and Yk for the set oi

Yk of interest..

! +. r_ remains only to show lira i%(_yQIlog 1= o _li-o_y fo_.
i--)

_k such that s <y_ % S A = i, ... , k. But

So it is sufficient to show that s < y < S @Ef_

e - e a-i+0 I <cMI'" ....... _c ...... y

where M is some finite constant independent of e, y_ or c. Dsing

parts d), e) and slight modificationF of h) in the proof of the previous

limit we have:
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I 2c

I a_l+ 0
% Y

< cM as desired. This completes the proof that the decision pro-

l -cedure _= is uniformly asymptotically optimal of kth order.

We note, as in the previous sections, that if the problem is k

modified to allow r independent observations for each 8i, then the

sum of these observations may be used to obtain an asymptotically

cptimal decision procedure of_ kth order.

We now consider the case in which the other ._arameter is unknown,

ke e-I -kx

that is _P_(X) = _ x e for known k. It may be shown that if

i �I__i(_k)>o i =_, k �_,...
if andq(_k} =

1 • kyk otherwise

and all other definitions in this section are unchanged, then the

!
resulting k is uniformly asymptotically optimal of kth order.
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F. The non-parametric case.

_e now consider %he foilowina problem. Let U = {pc(.): ee _ ]

be a class of probability mass functions, each of which assigns proba-

•-_% =bll_y one to a specified denumerable class _ [x} of real numbers.

is an arbitrary index set. We assume for each @ in _ that p@(.)

:Ls completely specified. Let h(-) be a real valued function on _.

Let k(e) ::E[h(X)le]. We assume E[h2(X)I@] 5 B < _ for all e in

_. For some unknown e.6 _ we observe r + 1 independent identical].y
J

= x]
distributed ranuom variables Xj,I, ... , Xj,r+ 1 with P[Xj, s

= Pg.(x) s = ], ... , r + 1 x6_. We wish to estimate _(@j) on the
J

basis of these observations. For example, if h(x) = x then we are

estimating E[XI@]. If _j is our estimate we suffer a loss of

(_j - k(ej)) 2. We now assume we are face d with a sequence of such

decisions. In other words a sequence [@j: j = i, 2, ... ] is

selected from _ . For each e. we have r + 1 observations and we
J

may use Xj to estimate e.,j where X.=j is the j x (r+l) matrix of

observations (Xs,t). Johns [3] has considered this problem under the

assumption that each @. is an independent observation of an _-valued
J

random variable @ with unknown a pr!ori probability measure G

defined over a suitable o-algebra of subsets of _. We shall consider

the case in which the sequence {ej] is arbitrarily chosen.

As in the _revious cases we need a standard to use in evaluating

a particular decision procedure. For any e c _n we form the kth
-n

order empirical probability measure Gk such that for any setsn

_i' "'' ' _k in the G-algebra,

8_
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k(_l' _k i [number of i (k < i < n) such that
G

"'" ' ) = n- k + i - -

ei_k+_C _ _ = _,_ ... , k]. If we assume for i_< k_< m that

(8i, i = i, ... , m} is a sequence of random variables taking values

! in _ with -mSk having any k-dimensional probability measure Gk, and
i

ii 8m is independent of _l' "'" ' era- then the Bayes estimate fork'
i

" k(_m) is E[k(@m) l=XkmI aud the Bayes risk isi '
!' Rr+l(Gk ) = E[[k(Sm) - Elk(ore)I..Xkm]] 2], where Xk is the k × (r+l)I --- =m

1 matrix consisting of the last k rows of X and the subscript r+l
i --m

in the Bayes risk refers to the number of observations for each parameter

now take as our standard _P4 (e) = Rr(Gk)n and seek a
|

value . We
,r n

' k
procedure _ such that

F) _m&up _ E[(_(X i) - k(ei))2] - P_,r(en) < 0 .n-_ _t e. .,=l_ = ' -

We observe that Rk,r+l(_en) is not a desirable standard since if _ is

the class of binomial densities, for example, then, as mentioned earlier,

Hk,r+l(_en) could not be achieved.

We observe that theorems l) and 2) are still valid in this case

when _,r(_en) is substituted for Rk(_en) and property F) for the

property of uniformly asymptotically optimal of kth order.

We define :

CxlliiXlr)Ak = where Xs, t is an arbitrary real number.

Xk,l' . , Xk, r
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Ak
(q) q = i, 2, ... , m(Ak) to be the m(Ak) distinct matrices

obtained from Ak by independently permuting the elements

w_thin each row. Clearly i < m(A k) < (r_)k.

Xj-k_l,l Xj-k+l,2 • . . Xj_k+l, r
Xj_k+2, I Xj.k+2,2.... Xj-k+2j

×_ =_

=j_r . .

j,Xi Xj,2 " " " Xj,r /

I if there exists q = !, --- , m(Ak) such that

x_ :A,k j:k,k+_,..
=j,r (q)

M.(A k) =
J

0 otherwise

Zj(Ak) = Mj(Ak)h(Xj,r_l). j = k, k + i, ...
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i

Mj(Ak)
pi(Ak) _-- J--k...........

m(Ak)(i-k+i)

i

Z Z,(A5
. J=k _

Pi(Ak) = m(Ak)(i- k + i)

Pi(Ak),.-. if PI(A5>0
PI(Ak)

0 elsewhere

r+l

i I s) if i = ], ..° , k - l-BI/2 if

mk(x,_ _ _,_k, k �I,...i

i = k, k + i, ...

BI/'_ if ?/25 P_(_:,:1

I, I.
We shall _roveo(_p_, ) _ _ro_ F)_ov_e_t_e
following condition on E is satisfied. V _ 0 < ¢ < 1

l,,[

i
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_.: i \-

=__m--n --' P _ [] Pe (Xi-k+_,s) < = 0 uniformly in _.e
n-+ _ i=k Lj=k /=i s=l j-k+I J

where Xi_k+ _ has probability mass function P8 (.). Such a
_S i-k+_

condJtion is satisfied, for example, if @c _ x¢_,_pe(x) _ B(x) > O,

since in this case

i % (Xi_k+_)<Lj:l k! _l j-k+_ J

V ... _ I Pej_k+ (x(i_l)r+s),xic_ XkrCFJ Lj=I _=i s=l J

_=i s=l i-k,i

[_ r i l
_<Z "- E _ '_ _ _(x(___)_+_),il.--7i

x16_ Xkr6_ - =I s=l

k

_=i s=l i-k+_

i if a<b

where, az before, I(a, b) =

• 0 otherwise .

But V 5 > 0 there exists a set _5 c _ such that _5 has only a

finite number N5 of elements a_d P[x¢_ 8] > 1 - 5. Hence:
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Z "'" Z z _(x(_.l)r+s), Pei.k+_
Xl£_ Xkr¢_ =i s=l £=i s=l

_< _ ... _ I n(x(i.l)r+s), il.ej + 1- (i-
XleS 8 XkrCL"5 =i s=l

< 1 - (1 - 8) kr for i > i where , l, < min [q(x)] kr .1-g
- - o (io) x_5 .

Since 8 was arbitrary the result quickly follows. This is not the _

only case, however, in which the condition is satisfied, as was seen in

Sections A and C.

The proof that k has property F) follows the same general lines

as in our other examples. V i = k, k + l, ...

= l F Pej (X4s)_et: Qi(Ak) i- k+ z
J:k _:i s=l -k+_

1 Z Z h(x)Pej(x)Q_(Ak)_:i- k+Z Pe _X_,s)
j=k x_ _=i s=! j-k+_

R i be a set of k x r matrices such that P[_,rCRi]: : i

and AkcRi_ Q(Ak) > 0
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Then for A"cR. we have that one version of
i _.

_[_(%)i_,r:Ak] is_qualto ,kr(Ak):Q_(Ak)
i, Qi (Ak ) when 8m has

probability m_asure _..
i

But

= = ,_ : pej_k+ ( j = k, ... , i- kq=l _=l s=l

and

E[Zj(=_i,r)J=_!_r = Ak] = E[Mj(Ak)SE[h(Xj,r+I )]

= m(Ak) _I _ PBjs:l -k+_(x_'s)_ h(x)P°(x)= xc_ j

j = k, ... , i - k .

Hence, arguing as in Section A,

_8.-2i-k+___!52
P[ IPi(_i, r) Qi(X_-'_,r)11 > 5i(Ak) IXk,r=_ = Ak] -< 2ke l e k l

k
cvided 5 >

i--i-k+l

Since Z. is not bounded we are unable to use lemma 3). We can, however,

use a simple Chebyshev bound,observing that Var[Zj(Ak)]
*%

_E_h=(Xj,r+l )] _B; and hence using an argument similar to that in the

proof of lemma 5) we have:
-

9o

XXX-035



P[IPI(_-%( I>81(Ak) --Ak]#I_ ----,r

_ _ .... 2 provided 6:I._i _-. k_+ 1 "

(i- k �i)181-i-k+ll

It thus follows, using a modified version of _ 4), that: V AkcRi

(8i � �$�°���i)

P[l'i(Xi) - *i, rC-__i,r)l_> QIcAk) l'-'_i,r = _]

_i -2 k -i k_
< 2ke e + ..... 2

k
(i - k + 1)(8,, -'i - k + 1")

k
provided _i_ i"- k+ i

Thus we may t_e

8i + Bi/26i k
' if 8i_>i.k+ I

Qi

_i =

0 otherwise

48 i -2 i-k+l 2k _i k2B(i- k _+.0 k
2ke e + ,, if 8 i >

i)Si _ k]2 - i - k + i[(i k +

i otherw:i.:._e
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ai°I I

QIlogi k iI/_

il/g if Qi> (i- k + l)logi

5i =

0 othe1_ise

n

Then clearly lira in _ E[_i + _ilQi -> ai] = 0 uniformly in __)"
n-__ i=k n

Since our ass_,._d condition assures that _lim [i I p[Qi < al]] = 0n-*_ i=k

uniformly in .8, theorem 2) is satisfied, and k has

pro_rty F).

We observe that in this case_ as in the binomial_ the choice of which

information to neglect at the ith stage was arbitrary. In p_rticulsr

=_i could have been defined in any one of (r + I)k ways. We th%uir

could have defined (r + i)k essentially different estimators _i,u'

esah of which would have the desired properties. As in the binomial case

~ 1 (_)k
it may be shom_ tha_ _i = (r + I)k u=l _i,u is an improved estimate.
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We note that if _ had been defined as a class of absolutely

continuous distribution functions, a similar decision procedure could

have been derived. As in the normal and gamma examples, a sequence

[ci] would allow us to treat this continuous case as we Cid the discrete

case, using lemma 5) to show the appropriate limits hold.

G. The emnirical Bayes problem.

We now consider a modification of our decision problem in which the

sequence {el} is not an arbitrary sequence, but is instead a sequence

of observations of random variables. If these random variables are

independent and identically distributed then the problem has been called

the empirical Bayes problem. Many fine articles have been written on

this problem and the results obtained have inspired this paper. We

shall here, however, consider a more general form of the problem.

Instead of assuming the e i to be independent observations of a random

variable 8, we assume the sequence [8i] to be a realization of a

stochastic process [8i: i = i, 2, ... ] which is strictly stationary

of order k. In other words for any k positive integers

i_,_ i2, ... , _ and any positive integer j the k dimensional

random vectors (Sil, 8i2 , ... , 8_) and (Sil+J, eie+j, ... , e_+j)
are identicallydistributed. In particular 3 we suppose that

V i = k, k + l, ... the vector (%-k+l' "'" ' 8i) has distribution

function Gk(xk ) Thus if Gk(_k ) = _=_ G(y_) for some G we would

have the standard empirical Bayes case.
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If Gk were known and if @. were distributed independently ofi

(8_,_e23 ... , @i.k) then the standard Bayes argument would yield

A = E[ei[_i]_ as an estimate for e.l which minimizes the expected loss

and achieves the Bayes risk R(Gk). _en if e. were not distributedi

independently of (el3 62, ... , ei_k) A might still be a "good"

estimate, and the risk R(Gk) a reasonable risk to attain. We shall

ShOW _'_ -'"_._a.any procedure which is as_ptotically optimal of kth order

(derived under the assumption of an arbitrary _) will also achieve

asymptotically an average risk less than or equal to R(Gk). To be more

precise, we shall show the following:

Let: _ be a bounded interval of the real line.

{el, i = I, 2, ... ) be a strictly stationary stochastic process

of order k.

Gn be the joint distribution function of (01, ... , en)

n = l, 2, ...

be the class of all possible sequences of distribution functions

[Gn; n = i, 2, ... ] such that Gn is the n dimensional

.marginal distribution obtained from Gn+l, Gn satisfies the

above definitions, and Gn puts probability one on _n for

all n.
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R(_i, Gi) be the risk of using the _stim_te _i for e.1 when

the vector 8. is distributed according to GI.
--i

This risk depends, of course, on the class

= (po(.): o al.{

9 n

R(_n' Gn) = _n _ R(_i' Gi) where Gi is the i dimensional
i=l

marginal distribution obtained from

Gn.

We now state and prove a generalization of a theorem by Samuel [11].

Theorem h) Let _ = {pc(-): ec2 ) be a class of distribution functions.

Let _k be a decision procedure which is asymptotically optimal ofi
i kth order for U . Then

I
i
, li---m R(_, Gn) _ R(Gk)

n _

for all {Gn]_. If _k is uniformly asymptotically optimal then the

above inequality becomes
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Proof :

Let R(q_k_-Oi) = E[(_ki(_i)- " O:)2]'x Then:

n n

k G i) 1 _ E[(q_k(xi). ei)2]
i _ R(_i, = n i=lR(_k' Gn) = n i_l

n

1 _ E[E[( k ei)2)L_i]]=n %(xi)"
i--i

n

m _ k

z Z _[F,(%,ei)].n
i=l

For the remainder of the proof we shall let Eli .] represent expectation

_ have a priori distribution functionwhere V i >k el_k+ l, ... , e i

k
G , and E2[.] represent expectation where el_k+ l, ... , e i have

k the kth order empirical distri-a priori distribution function Gn,

bution function generated by el, e2, ... , en. We now let A(_j)
be

of El[ejl._]_ and _('_)v be a form of E2[eJ IX-_]'vThen A
a form

achieves the risk R(Gk) and _ the risk Rk(en ). We observe V ek

We ca]_.]this conmlon value L(ek). Then

%
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._(_en)=E2[(_,¢__)-ek)21

._<E21:(A(_) - ek)2]

_-;.2[E2[(A(_)_%)2[%]}

n

_ -i E T.(e )n- k + 1 i-k+l' "'' ' el"i=k

Hence:

n

El[_(On)] < _ _ 1 F El[L( ..- - n k + 1 - Gi-k+l' " ' 8i-)]-
i:-k

ll

1 _ R(ak)=R(_k).=]_ k'+Z =
i=k

k
But since _ is asymptotically optimal we have

{ n }E1 YVmin_.VR(_,_ei)__(_%)__<on-__ i=l

and hence, since our losses are bounded,

EI[R , _0_.)]- _ < 0
n__ i-_l -_ -

_-_ iR(_k Gn) R(Gk)'!< 0i _n' " - 'n-_ .-

The proof of the second part of the theorem follows immediately.

Q.E.D.
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Corollary.

If in addition to the assumptions of theorem 4) we add the condition

that V J = k + i, k + 2, ... Oj is distributed independently of the

vector _j-k then the two conclusions of the theorem may be replaced

by

liraR( kn,On):R(ak)
n-@c@

and

k Gn) = R(Gk) uniformly for [Gn]_lim R(_n,
n_

respectively.

Proof:

To prove both parts of the corollary it is sufficient to show

li__mR(_kn_ Gn) _> R(Gk). But since ej is independent of _ej.k, R(Gk)
n--)oo

is the minimum risk that can be attained by any estimate of ej. Hence

R(_k, G i) _>R(G k) for all i_>k. It may be shown that

i < k_R(G i) _>R(G k) so that R(_k, G i) _R(G i) _>R(G k) for all

i < k. Thus R(_n3 G n) _>R(G k) for all n so that

li_m R(_n , G n) _>R(G k) as desired.
n-._co

Q.E.D.
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